Immunohistochemical Detection of the Human Herpes Virus 8 (HHV8) Latent Nuclear Antigen-1 in Kapasi Sarcoma Cases

Zahra Safai Naraghi¹, Shahram Saberi¹, Ali Granser¹, Vahid falah azad²

¹Dept. of Pathology, Tehran University of Medical sciences, Tehran, Iran.
²Noor Pathobiology Lab, Tehran, Iran

ABSTRACT

Background and Objectives: The molecular genetic of the human herpes virus 8 (HHV8) has now been characterized the pathogenesis of kaposi sarcoma (KS). This study attempted to determine the rate of HHU-8 infection in KS in an Iranian cross sectional study.

Method & material: In this cross-sectional study, we used paraffin-embedded specimens of 54 clinically well-characterized kaposi sarcoma cases. Routine streptavidin- biotin- peroxidase immunostaining with diaminobenzidine was performed on paraffin-embedded tissue of 54 KS cases using a monoclonal antibody directed against the c-terminum of the latent nuclear antigen-1 molecule of HHV-8 (colone 13B10; Novocastra) at 1:50 dilution.

Result: Positive HHV8 nuclear staining was detected in the nuclei of the spindle cells and endothelial cells of the vascular channels in about 88.9%. (48/54) of all cases and in 90.56% (48/53) of cases with presence of residual tumor in specimen (1 of 54 paraffin blockes has no residual tumor). HHV8 was detected in higher percentage in plaque and nodule stage rather than patch stage with p=0.035. HHV 2 was detected in lesser percentage in lesion of hand and trunk rather than other sites with p=0.042. There was no significant difference in HHV8 positivity between the presence of HHV8 and age, gender and history of immunosuppression.

Conclusion: Immunohistochemical detection of LANA HHV-8 is helpful in diagnosis of suspicious cases of KS, specially in lesion of plaque and nodule stage that are not located only in hand or trunk.

Keyword: Human Herpes virus 8, LNA-1 Antigen, Kaposi Sarcoma
Introduction

Kaposi Sarcoma (KS) composed of vessels and spindle-shaped cell, was first described by Kaposi in 1872 as idiopathic multiple pigment-sarcoma of the skin (1). KS in an invasive vascular neoplasm characterized by proliferation of angular vessels in the from of vascular splits in dermis(2). It classified as classic, African, iatrogenic and AI DS related (3,4). In classic KS the disease manifest itself by multiple dermis blue plagues or nodules starting on the feet and leg. The histologic features of KS are identical of it clinical forms(5).

Microscopically three feature are seen as early(patch),plaque and nodule stage; in early or patch stage an irregular dermal proliferation of jagged thin walled vascular channels is noted, in plaque stage of KS presence of cellular fascicles with a largely spindle cell is seen, and in the nodular stage a mass of fusiform neoplastic cell which form interlacing bundles is evident and slit-like spaces are scattered throughout the tumor , yielding a sieve-like appearance(6). The most typical feature of KS is the presence of spindle cells forming slits containing red blood cells (7).

In 1994, Chang et al. identified DNA belonging to a novel virus in tissue affected by KS. His virus, human herpes virus type-8 (HHV-8) was originally known as KS-associated herpes virus (KSHV) (8). As whit other cell-transforming DNA viruses, infection with HHV-8 alone is probably not sufficient for the development of KS, additional cofactor are probably required (9). Further, the explosive incidence of HIV-associated KS in early 1980s result from colling epidemics of HIV and HHV-8 infection in homosexual and bisexual communities (10).

It is believed to be necessary but not sufficient to cause the disease, with other factors (such as immunosuppression) probably playing a major contributory role. Parenthetically, HHV-8 is also involved in the pathogenesis of multicentric Castleman’s disease and primary effusion lymphoma (11-14). The most important recent development in this field has been the discovery that a new human herpes virus (HHV-8) is present in almost 100% of KS lesions, whether I-IIIV-related, classic, endemic, or iatrogenic (12).

The aim of this study was to assess the rate of HHV 8 infection in an Iranian series of KS cases using an immunohistochemical method and an available antibody against the HHV 8 latent nuclear antigen-1 (LANA-1).

Methods and Material

Material: Paraffin embedded specimens of 54 clinically well-characterized KS cases were studies.

Immunohistochemistry: Paraffin sections were cut of 4 μm, mounted on 5-aminopropyltriethoxylin (AAS) coated slides and allow to dry overnight. The sections were dewaxed in xylene and treated with microwave heating at 60°C for 20 min in a Citrate buffer (2.1 g/1000 ml; pH 6.01) for antigen retrieval after blocking of endogenous peroxidase, the sections were washed in phosphate- buffer saline (PBS), and non-specific binding of secondary antibody was blocked with normal serum. Routine streptavidin- biotin- peroxidase immunostaining with diaminobenzidin was applied to the sections followed by overnight incubation with a murine monoclonal antibody directed against the c-terminus of the latent nuclear antigen-1 molecules of HHV 8 clone 13B10; novocastra of 1:50 dilution. Cells were classified as positive for HHV 8 when there was nuclear staining.

Statistical analysis

Correlation between HHV 8 immunostaining and clinicopathological features were analyzed using chi-squared (x²) contingenCy test and fisher’s exact test. Only P value of less than 0.05 was considered as significant.

Results

HHV 8 was detected in the nuclei of the spindle cells and endothelial cells of the vascular channels of infected KS lesions(Fig.1,2). The lesions that are...
positive show nuclear staining in at least 5% of the lesional cells. Positive HHV 8 nuclear staining was detected in about 88.9% (48/54) of all cases and in 90.56% (48/53) of cases in which the residual tumor was present (1 of 54 cases has no residual tumor). 14.8% (8/54) has history of renal transplantation and all of which showing positive result. The median age of positive and negative cases is 61.2 and 57.8 respectively.

There was significant difference between stage and site of the lesions and positive immunohistochemical staining for HHV 8.

HHV 8 was detected in 69.23% of patch stage, 95.24% of the plaque stage and 95% of the nodule stage with significant higher percentage in plaque and nodule stage (P value = 0.035) (Table 1).

HHV 8 was detected in 66.67% of the lesions that present only in upper extremity, 94.44% of lesion that present only in lower extremity, 50% of lesions present only in trunk, 80 lesions that involve whole of body and 100% lesions that involve both upper and lower extremity, with significant lesser HHV 8 positive percentage in only upper extremity and only trunk lesions (P value = 0.042). However there was no significant difference in HHV 8 positivity between the presence of HHV and age, gender and history of immunosuppression (P = 0.661, 0.574 and 0.279 respectively) (table 2).

Table 1: Immunohistochemical detection of HHV 8 in different stages

<table>
<thead>
<tr>
<th>Pathological subtypes</th>
<th>No. of cases</th>
<th>HHV 8 immunodetection positive</th>
<th>HHV 8 immunodetection negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch</td>
<td>13</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Plaque</td>
<td>21</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Nodule</td>
<td>20</td>
<td>19</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: HHV8 expression in KS and correlation with clinical and pathological features

<table>
<thead>
<tr>
<th>Clinicopathological parameters</th>
<th>No. of cases</th>
<th>HHV 8 immunodetection positive</th>
<th>HHV 8 immunodetection negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>41</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper extremity</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>36</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>Trunk</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Whole body</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Upper or lower extremity</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
Discussion

In this study we have shown that HHV-8 infection can be detected by immunohistochemistry in the majority of KS lesions as other studies (2-4), (Table 1). The plaque and nodule stage have significant higher percentage of immunohistochemical staining for HHV-8 than patch stage, also lesions that are present only in hand or trunk has significant lesser percentage of positivity for HHV8 immunohistochemical staining than other sites (Table 2).

Because of lesser percentage of positivity in patch stage than plaque and nodule stage there is questionable sensitivity for this method to confirmation the diagnosis of lesions in patch stage and the lesion involve only hand or trunk that does not show in other studies (5,6). Holger et al. reveal that none of the angiosarcoma cases and none of the negative control samples (juvenile haemangiomas) revealed positive immunohistochemical staining with the LANA-1 antibody. In contrast, HHV-8 LANA-1 was clearly detected in all analyzed cases of KS and multicentric Castleman’s disease. These results were confirmed by PCR assay at the DNA level (5). Angela et al. detected HHV-8 in 78 percent of 37 cases of KS by immunohistochemical method (6). Both of these studies say that the immunohistochemical staining for LANA of HHV-8 is sensitive to confirmation the diagnosis of KS in patch stage, and limits the study only to cutaneous and extracutaneous site, but in our study this sensitivity about patch stage is in question and we limits the site of study to upper extremity, lower extremity, whole of body, trunk and upper and lower extremities and we show that the sensitivity of this method is in question in lesion that involve only trunk or hand.

We do not access to PCR method to confirmed our negative result in patch stage about HHV-8 compared to Angela et al. and Holger et al. that use this method, that limits our study. There is no significant difference about the result of our study compare to other studies regarding other stage (except patch stage) and other site (except lesion involving only hand or trunk). There was no significant correlation between the presence of HHV8 and age, gender, and history of immunosuppression similar the results of other studies (15-17). We could not find any study that call in question the pathogenesis of HHV-8 in KS cases (18-20).

Conclusion

Our study showed that the immunohistochemical detection of latent nuclear antigen-1 of HHV-8 was helpful in confirm and diagnosis of suspicious cases of KS specially in lesion of plaque and nodule stage that are not located only in hand or trunk, and
the sensitivity of this IHC method is in question in patch stage lesion that are only located in hand or trunk.

Acknowledgements

Thanks to Dr. Zahra Safai Naraghi for financial support of this study and to undertaker of the archive of Razi Hospital. The authors declare that there is no conflict of interests.

References

19. Masini C, Abeni DD, Cattaruzza MS, Capuano