The Hyper–Zagreb Index of Graph Operations

G. H. SHIRDELa,*, H. REZAPOURa AND A. M. SAYADIB

a Department of Mathematic, Faculty of Basic Sciences, University of Qom, Qom, Iran
b School of Mathematic, Statistics and Computer Science, University of Tehran, Tehran, Iran

(Received July 1, 2013; Accepted November 11, 2013)

ABSTRACT

Let G be a simple connected graph. The first and second Zagreb indices have been introduced as
\[M_1(G) = \sum_{v \in V(G)} \deg_G(v)^2 \]
and
\[M_2(G) = \sum_{uv \in E(G)} \deg_G(u) \deg_G(v), \]
respectively, where \(\deg_G(v) \) is the degree of vertex \(v \) in \(G \). In this paper, we define a new distance-based named Hyper–Zagreb as
\[HM(G) = \sum_{e=uv \in E(G)} (\deg_G(u) + \deg_G(v))^2. \]
In this paper, the Hyper–Zagreb index of the Cartesian product, composition, join and disjunction of graphs are computed.

Keywords: Hyper–Zagreb index, Zagreb index, graph operation.

1. Introduction

In this paper, it is assumed that G is a connected graph with vertex and edge sets \(V(G) \) and \(E(G) \), respectively. We consider only simple connected graphs, i.e. connected graphs without loops and multiple edges. For a graph G, the degree of a vertex \(v \) is the number of edges incident to \(v \), denoted by \(\deg_G(v) \). A topological index \(\text{Top}(G) \) of a graph \(G \), is a number with this property that for every graph \(H \) isomorphic to \(G \), \(\text{Top}(H) = \text{Top}(G) \).

Usage of topological indices in chemistry began in 1947 when chemist Harold Wiener developed the most widely known topological descriptor, the Wiener index, and used it to determine physical properties of types of alkanes known as paraffin. In a graph theoretical language the Wiener index is equal to the sum of distances between all pairs of vertices of the respective graph. For a nice survey in this topic we encourage the reader to consult [14].

* Corresponding author (Email: shirdel81math@gmail.com).
Numerous other indices have been defined. The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajstić [6]. They are defined as:

\[M_1(G) = \sum_{v \in V(G)} \deg(v)^2 \]

\[M_2(G) = \sum_{uv \in E(G)} \deg(u)\deg(v). \]

We encourage the reader to consult [1, 5, 16, 17, 18] for historical background, computational techniques and mathematical properties of Zagreb indices. We define the Hyper–Zagreb index as:

\[HM(G) = \sum_{e=uv \in E(G)} (\deg_G(u) + \deg_G(v))^2. \]

The Cartesian product \(G \times H \) of graphs \(G \) and \(H \) has the vertex set \(V(G \times H) = V(G) \times V(H) \) and \((a, x)(b, y) \) is an edge of \(G \times H \) if \(a = b \) and \(xy \in E(H) \), or \(ab \in E(H) \) and \(x = y \).

The join \(G + H \) of graphs \(G \) and \(H \) is a graph with vertex set \(V(G) \cup V(H) \) and edge set \(E(G) \cup E(H) \cup \{uv: u \in V(G) \text{ and } v \in V(H)\} \).

The composition \(G[H] \) or \((G \circ H)\) of graphs \(G \) and \(H \) with disjoint vertex sets \(V(G) \) and \(V(H) \) and edge sets \(E(G) \) and \(E(H) \) is the graph with vertex set \(V(G) \times V(H) \) and \(u = (u_1, v_1) \) is adjacent to \(v = (u_2, v_2) \) whenever \(u_1 \) is adjacent to \(u_2 \) or \(u_1 = u_2 \) and \(v_1 \) is adjacent to \(v_2 \).

The symmetric difference \(G \oplus H \) of two graphs \(G \) and \(H \) is the graph with vertex set \(V(G) \times V(H) \) and

\[E(G \oplus H) = \{(u_1, u_2)(v_1, v_2) | u_1v_1 \in E(G) \text{or} u_2v_2 \in E(H) \text{but not both}\}. \]

The tensor product \(G \otimes H \) of two graphs \(G \) and \(H \) is the graph with vertex set \(V(G) \times V(H) \) and \(E(G \otimes H) = \{|u_1, u_2)(v_1, v_2) | u_1v_1 \in E(G) \text{and} u_2v_2 \in E(H)\} \).

The corona product \(G \ast H \) is defined as the graph obtained from \(G \) and \(H \) by taking one copy of \(G \) and \(|V(G)| \) copies of \(H \) and then joining by an edge each vertex of the \(i \) th copy of \(H \) is named \((H, i)\) with the \(i \) th vertex of \(G \).

2. \textbf{NEW GRAPH INVARIANT}

In this section, we define the Hyper–Zagreb index of a graph and some exact formulae for the Hyper–Zagreb index of some well–known graphs are presented. We begin with the definition and crucial lemma related to distance properties of some graph operations.
Let us begin with a few examples, then we will give a crucial lemma related to distance properties of some graph operations. Our main results are applications of this lemma in computing exact formulae for some graph operations under Hyper–Zagreb index.

Example 1. In this example the Hyper–Zagreb index of some well-known graphs are calculated. We first consider the complete graph \(K_n \). Then the degree of any vertex in this graph is \(n-1 \), thus

\[
HM(K_n) = \sum_{e=uv \in E(K_n)} (\deg_{K_n}(u) + \deg_{K_n}(v))^2 = 2n(n-1)^3.
\]

Let \(K_{m,n} \) denote a complete bipartite graph. Then we have:

\[
HM(K_{m,n}) = \sum_{e=uv \in E(K_{m,n})} (\deg_{K_{m,n}}(u) + \deg_{K_{m,n}}(v))^2 = mn(m+n)^2.
\]

For a cycle graph with \(n \) vertices, we have:

\[
HM(C_n) = \sum_{e=uv \in E(C_n)} (\deg_{C_n}(u) + \deg_{C_n}(v))^2 = 16n.
\]

For a path with \(n \) vertices, we have:

\[
HM(P_n) = \sum_{e=uv \in E(P_n)} (\deg_{P_n}(u) + \deg_{P_n}(v))^2 = 16n - 30.
\]

For wheel on \(n+1 \) vertices, we have:

\[
HM(W_n) = \sum_{e=uv \in E(W_n)} (\deg_{W_n}(u) + \deg_{W_n}(v))^2 = n(n^2 + 6n + 45).
\]

Finally, for a ladder graph with \(2n \) vertices, \(n \geq 3 \), the Hyper–Zagreb index can be computed by the following formula:

\[
HM(L_{2n}) = \sum_{e=uv \in E(L_{2n})} (\deg_{L_{2n}}(u) + \deg_{L_{2n}}(v))^2 = 108n - 156.
\]

Lemma 1. Let \(G \) and \(H \) be two connected graphs, then we have:

(a) \(|V(G \times H)| = |V(G \vee H)| = |V(G[H])| = |V(G \oplus H)| = |V(G)||V(H)| \),

\[
|E(G \times H)| = |E(G)||V(H)| + |V(G)||E(H)|,
\]

\[
|E(G + H)| = |E(G)| + |E(H)| + |V(G)||V(H)|,
\]

\[
|E(G[H])| = |E(G)||V(H)|^2 + |E(G)||V(G)|,
\]

\[
|E(G \vee H)| = |V(G)||V(H)|^2 + |E(G)|V(G)^2 - 2|E(G)||E(H)|,
\]

\[
|E(G \oplus H)| = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 4|E(G)||E(H)|.
\]

(b) \(G \times H \) is connected if and only if \(G \) and \(H \) are connected.
(c) If \((a,b)\) is a vertex of \(G \times H\) then \(\deg_{G \times H}((a,b)) = \deg_G(a) + \deg_H(b)\).

(d) If \((a,b)\) is a vertex of \(G[H]\) then \(\deg_{G[H]}((a,b)) = |V(G)| \deg_G(a) + \deg_H(b)\).

(e) If \((a,b)\) is a vertex of \(G \oplus H\) or \(G \vee H\), we have:
\[
\deg_{G \oplus H}((a,b)) = |V(H)| \deg_G(a) + |V(G)| \deg_H(b) - 2 \deg_G(a) \deg_H(b).
\]
\[
\deg_{G \vee H}((a,b)) = |V(H)| \deg_G(a) + |V(G)| \deg_H(b) - \deg_G(a) \deg_H(b).
\]

(f) If \(a\) is a vertex of \(G + H\) then, we have:
\[
\deg_{G + H}(a) = \begin{cases}
\deg_G(a) + |V(H)| & a \in V(G) \\
\deg_H(a) + |V(G)| & a \in V(H)
\end{cases}
\]

Proof: The parts (a) and (b) are consequence of definitions and some famous results of the book of Imrich and Klavzar [7]. For the proof of (c-f) we refer to [8].

Theorem 1. Let \(G\) and \(H\) be graphs. Then we have:
\[
HM(G + H) = HM(G) + HM(H) + 5|V(G)|M_1(H) + |V(H)|M_1(G)
+ 8\left(|V(G)|^2|E(H)| + |V(H)|^2|E(G)| + |E(G)||E(H)|\right)
+ |V(G)||V(H)|(|V(H)| + |V(G)|)^2 + 4|E(G)| + |E(H)|.
\]

Proof: From the definition we know:
\[
E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}
\]
So, we have:
\[
HM(G + H) = \sum_{uv \in E(G + H)} (\deg_{G + H} u + \deg_{G + H} v)^2
= \sum_{uv \in E(H)} (\deg_{G + H} u + \deg_{G + H} v)^2
+ \sum_{uv \in E(G)} (\deg_{G + H} u + \deg_{G + H} v)^2
+ \sum_{uv \in \{uv : u \in V(G), v \in V(H)\}} (\deg_{G + H} u + \deg_{G + H} v)^2.
\]
It is easy to see that:
\[
\sum_{uv \in A} (\deg_{G + H} u + \deg_{G + H} v)^2 = HM(H) + 4|V(G)|\left(M_1(H) + |V(G)||E(H)|\right)
\]
and similarly we have:
\[\sum_{u \in B} (\deg_{G \times H} u + \deg_{G \times H} v)^2 = HM(H) + 4|V(H)|\left[M_1(G) + |V(H)|E(G)\right] \tag{2} \]

Finally, we can write:
\[\sum_{u \in C} (\deg_{E \times G} u + \deg_{E \times G} v)^2 = \sum_{u \in V(G)} (\deg_G u + \deg_G v + |V(G)|)^2 \]
\[= |V(G)|M_1(H) + |V(H)|M_1(G) + 8|E(G)||E(H)| \]
\[+ |V(G)||V(H)|\left(|V(H)| + |V(G)| \right)^2 + 4|E(G)| + |E(H)| \]
\[+ 4\left[|V(G)|^2|E(H)| + |V(H)|^2|E(G)| \right]. \tag{3} \]

Combining these three equations ((1), (2), (3)) will complete the proof.

Theorem 2. Let G and H be graphs. Then we have:
\[HM(G \times H) = |V(G)||H(M(H)| + |V(H)|HM(G) + 8|E(G)||M_1(G) + |E(H)||M_1(G) + 16|E(G)||E(H)| \]

Proof: From the definition of the Cartesian product of graphs, we have:
\[E(G \times H) = \{(a,x)(b,y) : ab \in E(G), x = y \text{ or } xy \in E(H), a = b\} \]
therefore we can write:
\[HM(G \times H) = \sum_{(a,x)(b,y) \in E(G \times H)} (\deg_{G \times H}(a,x) + \deg_{G \times H}(b,y))^2 \]
\[+ \sum_{(a,x)(a,y) \in E(H)} (\deg_{G \times H}(a,x) + \deg_{G \times H}(a,y))^2 \]
\[= \sum_{(a,x)(b,x) \in E(G)} (\deg_{G \times H}(a,x) + \deg_{G \times H}(b,x))^2 \]
\[+ \sum_{a \in V(G)} (\deg_{G \times H}(a,x) + \deg_{G \times H}(a,y))^2 \]
\[= \sum_{(a,x)(b,y) \in E(G \times H)} (\deg_{G \times H}(a,x) + \deg_{G \times H}(b,y))^2 \]
This implies that,
\[|V(G)||H(M(H)| + |V(H)|HM(G) + 8|E(G)||M_1(G) + |E(H)||M_1(G) + 16|E(G)||E(H)| \]

Theorem 3. Let G and H be graphs. Then we have:
\[HM(G[H]) = |V(H)|^4 HM(G) + |V(G)|HM(H) + 2|E(G)|V(H)M_1(H) \]
\[+ 8|V(H)|E(H)|E(G)|M_1(H) + 2M_1(G)V(H)|] \]

Proof: From the definition of the composition \(G[H] \) we have:

\[
HM(G[H]) = \sum_{(a,x)(b,y)\in E(G[H])} (\text{deg}_{G[H]}(a,x) + \text{deg}_{G[H]}(b,y))^2 + \sum_{(a,x)(a,y)\in E(G[H])} (\text{deg}_{G[H]}(a,x) + \text{deg}_{G[H]}(a,y))^2.
\]

So we have:

\[
\sum_{(a,x)(b,y)\in E(G[H])} (\text{deg}_{G[H]}(a,x) + \text{deg}_{G[H]}(b,y))^2
\]
\[
= \sum_{x\in V(H)} \sum_{y\in V(H)} (|V(H)|\text{deg}_G(a) + \text{deg}_H(x) + |V(H)|\text{deg}_G(b) + \text{deg}_H(y))^2
\]
\[
= \sum_{x\in V(H)} \sum_{y\in V(H)} \left(|V(H)|^2 HM(G) + |E(G)|(|\text{deg}_H(x) + \text{deg}_H(y)|^2 + 2|V(H)|M_1(G)(|\text{deg}_H(x) + \text{deg}_H(y)|) \right)
\]
\[
= |V(H)|^4 HM(G) + 2|E(G)|V(H)M_1(H) + 8|E(G)|V(H)E(H)| + 8M_1(G)V(H)|] \] (4)

Moreover,

\[
\sum_{(a,x)(a,y)\in E(G[H])} (\text{deg}_{G[H]}(a,x) + \text{deg}_{G[H]}(a,y))^2
\]
\[
= \sum_{a\in V(G)} \sum_{y\in E(H)} \left(4|E(H)| |V(H)|^2 \text{deg}_G^2(a) + HM(H) + 4V(H)|\text{deg}_G(a)|M_1(H) \right)
\]
\[
= 4M_1(G)|E(H)|V(H)|] + |V(G)|HM(H) + 8M_1(H)|]V(H)|E(H)|. \] (5)

It is easy to see that the summation of (4) and (5) complete the proof.

Theorem 4. Let \(G \) and \(H \) be graphs. Then we have:

\[HM(G \ast H) = HM(G) + |V(G)|HM(H) + |V(G)|M_1(G) + |V(G)|M_1(H) + 4|V(H)|E(G)|2|V(H)| + 1 \]
\[+ 8|E(H)|(|V(G)| + |E(G)|) + |V(G)|V(H)|]V(H)|^3 + 2|V(H)| + 4|E(H)| \]

Proof: Let \(A = E(G) \), \(B = E(H) \), and \(C = \text{edges between } G \text{ and } H \), then:

\[
\sum_{uv\in A} (\text{deg}_{G[H]} u + \text{deg}_{G[H]} v)^2 = \sum_{uv\in A} [(\text{deg}_G u + |V(H)|) + (\text{deg}_G v + |V(H)|)]^2
\]
\[= HM(G) + 4|V(H)\big|\big|E(G)\big| + M_1(G)\big)\]
(6)
\[
\sum_{uv \in B} \left(\deg_{G+H} u + \deg_{G+H} v\right)^2 = \sum_{i=1}^{\frac{|V(G)|}{2}} \sum_{uv \in E(H)} \left(\deg_H u + 1 + \deg_H v + 1\right)^2
\]
\[
= |V(G)|4|E(H)| + HM(H) + 4M_1(H)\big)\]
(7)
\[
\sum_{uv \in C} \left(\deg_{G+H} u + \deg_{G+H} v\right)^2 = \sum_{uv \in C} \left(\left(\deg_G u + |V(H)|\right) + \left(\deg_H v + 1\right)^2\right)
\]
\[
= |V(G)||V(H)||V(H)|^2 + 1 + 4|E(H)| + 2|V(H)| + 4|V(H)||E(G)|
\]
\[
\sum_{uv \in B} \left(\deg_{G+H} u + \deg_{G+H} v\right)^2 = |V(H)||M_1(G)| + |V(G)||M_1(H)| + 4|E(H)||V(G)| + 2|E(G)|\big)\]
(8)
Combining these three equations ((6), (7), (8)) complete the proof.

3. Future Work

In addition, further research we seek to generalize the above theorems for n graph. Then you can see the similarities between generalization of the first and second Zagreb and their generalization to Hayper–Zagreb index of graphs.

References