Fast Global Motion Estimation in Two Sampling Steps

Adel Ahmadi and Siamak Talebi
1- Electrical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran.
2- Advanced Communication Research Institute, Sharif University of Technology, Tehran, Iran.
Email: adel.ahmadi@gmail.com, siamak.talebi@uk.ac.ir

Received: May 2011 Revised: August 2011 Accepted: October 2011

ABSTRACT:
An important technique in image and video processing is global motion estimation (GME). The common GME methods can be classified in direct and indirect categories. Whereas the direct global motion estimation techniques boast reasonable precision they tend to suffer from high complexity. As with indirect methods, though presenting lower complexity, they mostly exhibit lower accuracy than their direct counterparts. In this paper, the authors introduce a robust algorithm for GME with near identical accuracy and almost 50-times faster than MPEG-4 verification model (VM). This approach entails two stages in which, first, motion vector of sampled block is employed to obtain initial GME then Levenberg-Marquardt algorithm is applied to the subsampled pixels to optimize the initial GME values. As will be shown, the proposed solution exhibits remarkable accuracy and speed features with experimental results distinctively bearing them out.

KEYWORDS: Global Motion Estimation, Pixel Subsampling, Block Sampling, MPEG-4.

1. INTRODUCTION

Motion estimation and compensation are some of the most essential techniques in video compression and processing. Motions in video are categorized into local motion (LM) and global motion (GM) [1]. The LMs are resulted from movement, rotation and reform of objects, while the GMs are due to movement, rotation, and camera zoom [2]. Global motion estimation (GME) has many applications such as video coding, image stabilization, video object segmentation, virtual reality and, etc. In MPEG-4 standard, some techniques such as sprite coding and global motion compensation (GMC) are required for GME [3].

The common GME methods are divided into direct and indirect categories. In the direct category, which is pixel-based, prediction error is minimized by using optimization methods such as Levenberg-Marquardt algorithm (LMA) [1],[2],[4]-[7]. The indirect methods consist of two stages. In the first stage, motion vectors of blocks are calculated and by using these vectors, GM of the frame is estimated in the second stage [8]-[14].

In the MPEG-4 verification model (VM), GME is a direct type scheme where LMA is applied to the whole frame. Since LMA has high computational complexity, some methods have been devised by considering a limited number of pixels in the calculations. One such technique is called FFRGMET that is used in MPEG-4 optimizing model. This technique just applies LMA to a number of pixels called feature pixels [15]. In [6], pixels are selected using gradient method. In this work, each frame is divided into 100 blocks and then 10% of pixels with the highest gradient are selected from each block. This procedure requires gradient calculations and pixels arrangement based on the gradients. Therefore, this method has a considerable computational complexity. The idea of random pixels selection is introduced in [16]. In spite of the method presented in [6], this technique has much lower computational complexity. However, random pixel selection causes numerical instabilities. In [4] and [5], pixels are selected based on a static pattern. In these papers, authors divide the frame into non-overlapped blocks and then select a few pixels with a static pattern from each block. These methods have low complexity and also do not cause numerical instabilities. However, they may converge to a local minimum because they have no initializing step. In comparison to MPEG-4 VM, this scheme is faster with little accuracy degradation. An indirect GME for the affine model is proposed in [14]. In this study, firstly the amount of translations is estimated by using integral projection algorithm (IPA) and then based on that information a limited block-matching is performed for each sampled block.

In this paper, we have improved the proposed method in [14] and intend to use the perspective model. This is expected to achieve an improvement of peak signal to noise ratio (PSNR) at low complexity.

The reminder of this paper is organized as follows. The motion models are described in section II and in
section III, the proposed method, including its different steps are discussed in details. The experimental results are provided in section IV and finally, the paper is concluded in section V.

2. MOTION MODELS

The most comprehensive GM model in MPEG-4 is the perspective model. This model encompasses simpler models. This model is defined by:

\[
x'_i = \frac{m_1 x_i + m_2 y_i + m_3}{m_7 x_i + m_8 y_i + 1} \\
y'_i = \frac{m_4 x_i + m_5 y_i + m_6}{m_7 x_i + m_8 y_i + 1}
\]

(1)

where \(m = [m_1 \ m_2 \ \ldots \ m_8]^T \)

(2)

and \((x'_i, y'_i) \) to reference frame pixels \((x_i, y_i)\) is GM vector from current frame pixels \((x_i, y_i)\) to reference frame pixels \((x'_i, y'_i)\). This vector consists of translation parameters \((m_1\) and \(m_6\)), rotation and zoom parameters \((m_1, m_2, m_3,\) and \(m_5\)), and perspective parameters \((m_7\) and \(m_8\)). Simpler models such as affine (with 6 parameters, \(m_7=\) \(m_8=0\)), Translation-Zoom-Rotation (with 4 parameters, \(m_1=m_5, m_2=-m_4, m_7=m_8=0\)), Translation-Zoom (with 3 parameters, \(m_1=m_6, m_2=m_3=m_7=m_8=0\)) and Translation (with 2 parameters, \(m_1=m_2=1\), \(m_3=m_5=1\)) are special cases of the perspective model.

3. GLOBAL MOTION ESTIMATION

The proposed algorithm consists of two stages. The first process calls for a rough estimation of GM. When this is obtained second stage takes place in which the initial estimation has to be optimized with greater precision. Structure of the proposed algorithm is as follows.

Stage I

- Estimating translation between two frames using IPA.
- Sampling blocks from the current frame as in Fig.1. Calculating motion vectors of sampled blocks using block matching (with shifted search centre and small searching range). Excluding 30% of blocks with the maximum sum of absolute differences (SAD).
- Estimating eight parameters of GM vector using above motion vectors.

Stage II

- Sampling current frame pixels using 1:12×12 model as in Fig.2-d. Applying LMA to sampled pixels to optimize initially estimated GM of the first stage. The LMA iterations are continued until either of the following conditions is satisfied: reaching 10 iterations or updated term be lower than 0.001 for translationally components and lower than 0.00001 for other components.

3.1. Initial Translation Estimation

In the first stage of GME, translation components must be estimated. In [1]-[5], a three-step search is used for this purpose. IPA is employed instead of a three-step search in our algorithm, because it is more accurate and robust [14].

To estimate translation between two frames, horizontal and vertical projection vectors are calculated as:

\[
IP_{k}^{\text{horiz}}(y) = \frac{1}{N} \sum_{x=1}^{N} F_k(x, y) \\
IP_{k}^{\text{vert}}(x) = \frac{1}{M} \sum_{y=1}^{M} F_k(x, y)
\]

(4)

(5)

where \(F_k\) denotes luminance of the frame \(k\) and \((M, N)\) are dimensions of frames. \(IP_{k}^{\text{vert}}\) and \(IP_{k}^{\text{horiz}}\) are integral projection values of \(F_k\) in vertical and horizontal directions respectively. By using the correlation between horizontal and vertical integral projection vectors of \(F_1\) and \(F_k\), a translation value is calculated in vertical and in horizontal directions as below:

\[
d_s = \min_{t=-s+1}^{s} \left\{ \sum_{x=1}^{M} \left| IP_k^{\text{vert}}(x) - IP_{k-t}^{\text{vert}}(x-t) \right|^2 \right\}
\]

(6)

\[
d_s = \min_{t=-s+1}^{s} \left\{ \sum_{y=1}^{N} \left| IP_k^{\text{horiz}}(y) - IP_{k-t}^{\text{horiz}}(y-t) \right|^2 \right\}
\]

(7)

where \((d_s,d_s)\) is the translation of the current frame with respect to previous frame and \(s\) is maximum search range. The maximum search range is determined based on the size and contents of the video. To give some examples, \(s=8\) for QCIF format and \(s=16\) for CIF and SIF formats seems reasonable.

3.2. Block Sampling and Limited Block Matching

After translation estimation, one of the patterns in Fig.1 is employed for blocks sampling. Size of each block for different formats is considered as: 8×8 for QCIF, 16×16 for CIF and SIF and 32×32 for 4CIF. Then for each sampled block, a modified full search block matching algorithm (BMA) is obtained. In this search, the search centre is shifted \((d_s,d_s)\) units and searching range is as small as \((-3, +3)\). This results in fewer SAD computations putations and sufficient accuracy for motion vectors of background blocks. Since blocks with high SAD are mostly part of the foreground, 30% of them are excluded. The motion vectors of remaining blocks will be used in the next subsection.
3.3. Initial Estimation of Perspective Model GM Parameters

By considering \((x_i, y_i)\) as central pixel coordinate of the current frame sampled block and \((x_i', y_i')\) as central pixel coordinate of the best matched block, we can have:

\[
\begin{align*}
x_i' &= v_{x,j} + x_i \\
y_i' &= v_{y,j} + y_i
\end{align*}
\]

where \(v_{x,j}\) and \(v_{y,j}\) are motion vectors obtained from the previous step.

To find GM between two frames, we must minimize the Euclidean error:

\[
E = \sum_{i=1}^{N_b} \left(\left(m_1x_i + m_2y_i + m_3 - x_i' \right)^2 + \left(m_4x_i + m_5y_i + m_6 - y_i' \right)^2 \right)
\]

where \(N_b\) is the number of blocks. Since the perspective model is nonlinear, (10) could be solved by using LMA which results in significant computational complexity. On the other hand, by using algebraic error definition [17], (10) can be modified as:

\[
E = \sum_{i=1}^{N_b} \left(m_1x_i + m_2y_i + m_3 - x_i' \right)^2 + \left(m_4x_i + m_5y_i + m_6 - y_i' \right)^2
\]

where \(D_i\) is the denominator of motion model:

\[
D_i = m_4x_i + m_5y_i + 1.
\]

At this stage, we can minimize (11) by solving \(\frac{\partial E}{\partial m_j} = 0\) and arriving at:

\[
\sum_{i=1}^{N_b} A_{ij} = \sum_{i=1}^{N_b} b_i
\]

where \(m\) is GM vector. The \(A_i\) matrix and \(b_i\) vectors are defined as (14) and (15).

3.4. Subsampling Pixels and Levenberg-Marquardt Algorithm

In this stage, the estimated GM from the previous stage is optimized with greater accuracy by employing LMA. In this paper, we suggest subsampling from all pixels of the current frame with a static pattern as in [4], instead of just selecting feature pixels between the remaining blocks as in [14]. This selection technique poses less computational complexity than [14] and it is more precise.

In this paper, the 1:12×12 sampling method is used, which means that we select one pixel from each 12×12 block. After pixels subsampling, initial GM is optimized by applying LMA to these pixels. To reduce outlier effects, 10% of pixels with the most error are discarded after first iteration [4].

4. EXPERIMENTAL RESULTS

In this section, the proposed method is examined and compared against MPEG-4 VM, [14] and [4] with a sampling factor 1:9×9. The following sequences with CIF format are considered for simulations: Akiyo (300 frames), Bus (150 frames), Carphone (300 frames),
Coastguard (300 frames), Foreman (400 frames), Flower (150 frames), Mobile (300 frames), Stefan (300 frames), Tempete (260 frames), and Waterfall (260 frames). The simulations are run on a desktop computer featuring 2.66GHz Core2Quad CPU, 4GB RAM and MS Windows Vista operating system in MATLAB environment.

The GME times of different sequences are presented in Table 1 and Fig. 1. Judging from the Table, it is seen that the proposed method’s GME time is less than that in [4] for most of the sequences. Furthermore, this is almost the same as the GME time in [14] with affine model.

Table 2 compares speed of the proposed method with other methods in relation to the MPEG-4 VM method with perspective model. As these results illustrate, the proposed technique is 53 times faster than VM with perspective model. This is while the method in [14] is about 43 times faster than VM with affine model and about 60 times faster than VM with perspective model. The Proposed method as well as [4] both work with perspective model whereas [14] only works with affine model.

Table 3 presents the PSNR of sequences calculated by:

$$PSNR = 10 \log_{10} \frac{255^2}{MSE}$$

where

$$MSE = \frac{1}{MN} \sum_{x \in X} \sum_{y \in Y} (F(x, y) - F_{x,y}(x, y))^2.$$

In Table 3 and Fig. 2, PSNR of GME for each sequence is presented. Table 4 also displays PSNR degradation in respect of VM with perspective motion model. As the results demonstrate, the proposed method has on average reduced the PSNR by -0.2 dB while [4] and [14] methods degrade the PSNR by -0.27 dB and -1.2 dB respectively.

For comparing coding efficiency of mentioned
methods, the test sequence is encoded in interframe mode (IPPPP…) with two fixed quantizer sizes Q=10 and Q=31. For each macroblock, encoder use local motion compensation or global motion compensation based on SAD criteria. The coding efficiency results are compared in Table 5 and 6. Furthermore, Fig. 3 and Fig. 4 illustrate the average size of compressed video frames.

5. CONCLUSIONS

In this paper, a fast two-stage algorithm for global motion estimation (GME) with perspective model is introduced. In the first stage, eight parameters of global motion (GM) are estimated by using sampled motion vectors of blocks. In the second stage, by subsampling of pixels and using Levenberg-Marquardt algorithm (LMA), the estimated GM of the first stage is estimated more accurately.

As the experiment results demonstrate, one key advantage of the proposed solution in this paper is that it is almost 53 times faster than the MPEG-4 VM method. Another outstanding feature of the innovative technique is its enhanced estimation accuracy, which is more than [4]’s and almost the same as MPEG-4 VM’s. Still, when compared against [14], the algorithm exhibits better precision with reasonable speed. This is while our method works with the perspective model and [14] estimates the simpler affine model.

Table 4. PSNR Degradation in Respect of MPEG-4 VM Perspective GM.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Akiyo</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>-4.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Bus</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.06</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Carphone</td>
<td>0.00</td>
<td>-0.07</td>
<td>-0.41</td>
<td>-1.96</td>
<td>-1.08</td>
</tr>
<tr>
<td>Coast.</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.14</td>
<td>0.22</td>
</tr>
<tr>
<td>Foreman</td>
<td>0.00</td>
<td>-0.15</td>
<td>-0.43</td>
<td>-1.09</td>
<td>-0.60</td>
</tr>
<tr>
<td>Flower</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>-2.04</td>
<td>-0.19</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.00</td>
<td>-0.04</td>
<td>0.05</td>
<td>-0.33</td>
<td>0.04</td>
</tr>
<tr>
<td>Stefan</td>
<td>0.00</td>
<td>-0.34</td>
<td>-1.74</td>
<td>-0.90</td>
<td>-0.58</td>
</tr>
<tr>
<td>Tempete</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.06</td>
<td>-0.35</td>
<td>-0.07</td>
</tr>
<tr>
<td>Waterfall</td>
<td>0.00</td>
<td>-0.04</td>
<td>-0.10</td>
<td>-0.76</td>
<td>0.05</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.00</td>
<td>-0.07</td>
<td>-0.27</td>
<td>-1.22</td>
<td>-0.21</td>
</tr>
</tbody>
</table>

Average Sizes of the Compressed Video Frames with Q=10 (KByte/Frame).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Akiyo</td>
<td>3.05</td>
<td>2.91</td>
<td>2.81</td>
<td>3.14</td>
<td>2.85</td>
</tr>
<tr>
<td>Bus</td>
<td>10.66</td>
<td>10.63</td>
<td>10.44</td>
<td>10.27</td>
<td>10.32</td>
</tr>
<tr>
<td>Carphone</td>
<td>1.62</td>
<td>1.59</td>
<td>1.64</td>
<td>1.70</td>
<td>1.69</td>
</tr>
<tr>
<td>Coast.</td>
<td>6.92</td>
<td>7.06</td>
<td>6.79</td>
<td>6.76</td>
<td>6.82</td>
</tr>
<tr>
<td>Foreman</td>
<td>6.73</td>
<td>6.67</td>
<td>6.86</td>
<td>6.82</td>
<td>6.90</td>
</tr>
<tr>
<td>Flower</td>
<td>11.16</td>
<td>11.38</td>
<td>11.27</td>
<td>11.55</td>
<td>11.35</td>
</tr>
<tr>
<td>Mobile</td>
<td>13.86</td>
<td>13.82</td>
<td>13.79</td>
<td>13.92</td>
<td>13.79</td>
</tr>
<tr>
<td>Stefan</td>
<td>9.83</td>
<td>10.01</td>
<td>9.90</td>
<td>10.50</td>
<td>10.26</td>
</tr>
<tr>
<td>Tempete</td>
<td>8.88</td>
<td>8.83</td>
<td>8.87</td>
<td>9.05</td>
<td>8.90</td>
</tr>
<tr>
<td>Waterfall</td>
<td>5.41</td>
<td>5.28</td>
<td>5.26</td>
<td>5.42</td>
<td>5.26</td>
</tr>
</tbody>
</table>

Average Sizes of the Compressed Video Frames with Q=31 (KByte/Frame).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Akiyo</td>
<td>2.81</td>
<td>2.81</td>
<td>2.64</td>
<td>3.15</td>
<td>2.55</td>
</tr>
<tr>
<td>Bus</td>
<td>7.29</td>
<td>7.28</td>
<td>7.25</td>
<td>7.20</td>
<td>7.23</td>
</tr>
<tr>
<td>Carphone</td>
<td>1.36</td>
<td>1.34</td>
<td>1.39</td>
<td>1.48</td>
<td>1.44</td>
</tr>
<tr>
<td>Coast.</td>
<td>5.65</td>
<td>5.78</td>
<td>5.57</td>
<td>5.52</td>
<td>5.61</td>
</tr>
<tr>
<td>Foreman</td>
<td>5.95</td>
<td>5.92</td>
<td>6.05</td>
<td>6.10</td>
<td>6.15</td>
</tr>
<tr>
<td>Flower</td>
<td>5.99</td>
<td>6.01</td>
<td>6.00</td>
<td>6.03</td>
<td>6.05</td>
</tr>
<tr>
<td>Mobile</td>
<td>7.08</td>
<td>7.07</td>
<td>7.06</td>
<td>7.09</td>
<td>7.06</td>
</tr>
<tr>
<td>Stefan</td>
<td>6.75</td>
<td>6.76</td>
<td>6.78</td>
<td>6.87</td>
<td>6.84</td>
</tr>
<tr>
<td>Tempete</td>
<td>6.31</td>
<td>6.27</td>
<td>6.28</td>
<td>6.38</td>
<td>6.31</td>
</tr>
<tr>
<td>Waterfall</td>
<td>4.93</td>
<td>4.82</td>
<td>4.84</td>
<td>5.00</td>
<td>4.84</td>
</tr>
</tbody>
</table>

Fig. 3. GME Time of [4], [14] and Proposed Methods (Sec.).
REFERENCES

