Generalizations of ϵ-Fixed Point Theorems in Partial Metric Spaces

S. A. M. Mohsenalhosseini*
Vali-e-Asr University

H. Mazaheri
Yazd University

Abstract. We consider the dualistic partial metric spaces on a set X, and we give necessary conditions for existence of fixed point and ϵ-fixed point for some maps.

AMS Subject Classification: 54H25; 54E50; 54E99; 68Q55
Keywords and Phrases: Fixed points, ϵ-fixed point, partial metric spaces, dualistic partial metric spaces

1. Introduction

The partial metric spaces has been introduced by Matthews in [5] as a part of the study of denotational semantics of dataflow networks. In particular, Matthews established the precise relationship between partial metric spaces and the so-called weightable quasi-metric spaces. Indeed he proved a partial metric generalization of Banach contraction mapping theorem.

A partial metric [5] on a set X is a function $p : X \times X \to [0, \infty)$ such that for all $x, y, z \in X$:

1. $x = y \iff p(x, x) = p(x, y) = p(y, y)$;
2. $p(x, x) \leq p(x, y)$;

Received: April 2013; Accepted: July 2013
*Corresponding author
A partial metric space is a pair \((X,p)\), where \(p\) is a partial metric on \(X\).

If \(p\) is a partial metric on \(X\), then the function \(p^\# : X \times X \to [0,\infty)\) given by \(p^\#(x,y) = 2p(x,y) - p(x,x) - p(y,y)\) is a (usual) metric on \(X\). Each partial metric \(p\) on \(X\) induces a \(T_0\) topology \(\tau_p\) on \(X\) which has as a basis of the family of open \(p\)-balls \(\{B_p(x,\epsilon) : x \in X, \epsilon > 0\}\), where \(B_p(x,\epsilon) = \{y \in X : p(x,y) < p(x,x) + \epsilon\}\) for all \(x \in X\) and \(\epsilon > 0\). Similarly, closed \(p\)-ball is defined as \(B_p(x,\epsilon) = \{y \in X : p(x,y) \leq p(x,x) + \epsilon\}\).

A sequence \(\{x_n\}_{n \in \mathbb{N}}\) in a partial metric space \((X,p)\) is called a Cauchy sequence if there exists (and is finite) \(\lim_{n,m} p(x_n,x_m)\) [5].

A partial metric space \((X,p)\) is said to be complete if every Cauchy sequence \(\{x_n\}_{n \in \mathbb{N}}\) in \(X\) converges, with respect to \(\tau_p\), to a point \(x \in X\) such that \(p(x,x) = \lim_{n,m} p(x_n,x_m)\) [5].

A mapping \(T : X \to X\) is said to be continuous at \(x_0 \in X\), if for \(\epsilon > 0\), there exists \(\delta > 0\) such that \(T(B_p(x_0,\delta)) \subset B_p(T(x_0),\epsilon)\). [1]

Definition 1.1. [5] An open ball for a partial metric \(p : X \times X \to [0,\infty)\) is a set of the form \(B_p^\epsilon(x) := \{y \in X : p(x,y) < \epsilon\}\) for each \(\epsilon > 0\) and \(x \in X\).

In [9], S. J. O’Neill proposed one significant change to Matthews definition of the partial metrics, and that was to extend their range from \(R^+\) to \(R\). In the following, partial metrics in the O’Neill sense will be called dualistic partial metrics and a pair \((X,p)\) such that \(X\) is a nonempty set and \(p\) is a dualistic partial metric on \(X\) will be called a dualistic partial metric space.

A dualistic partial metric on a set \(X\) is a function \(p : X \times X \to \mathbb{R}\) such that for all \(x, y, z \in X\):

1. \(x = y \iff p(x,x) = p(x,y) = p(y,y)\);
2. \(p(x,x) \leq p(x,y)\);
3. \(p(x,y) = p(y,x)\);
4. \(p(x,z) \leq p(x,y) + p(y,z) - p(y,y)\).

A dualistic partial metric space is a pair \((X,p)\), where \(p\) is a dualistic partial metric on \(X\).

A quasi-metric on a set \(X\) we mean a nonnegative real-valued function \(d\) on \(X \times X\) such that for all \(x, y, z \in X\):

\[
(3)\quad p(x, y) = p(y, x);
(4)\quad p(x, z) \leq p(x, y) + p(y, z) - p(y, y).
\]
(i) \(d(x, y) = d(y, x) = 0 \iff x = y,\)
(ii) \(d(x, y) \leq d(x, z) + d(z, y).\)

A quasi-metric space is a pair \((X, d)\) such that \(X\) is a (nonempty) set and \(d\) is a quasi-metric on \(X\).

Lemma 1.2. [5] If \((X, p)\) is a dualistic partial metric space, then the function \(d_p : X \times X \to \mathbb{R}^+\) defined by \(d_p(x, y) = p(x, y) - p(x, x)\), is a quasi-metric on \(X\) such that \(\tau(p) = \tau(d_p)\).

Lemma 1.3. [5] A dualistic partial metric space \((X, p)\) is complete if and only if the metric space \((X, (d_p)^*)\) is complete. Furthermore \(\lim_{n \to \infty} (d_p)^*(a, x_n) = 0\) if and only if \(p(a, a) = \lim_{n \to \infty} p(a, x_n) = \lim_{n, m \to \infty} p(x_n, x_m)\).

Before stating our main results we establish some (essentially known) correspondences between dualistic partial metric spaces and quasi-metric spaces. Our basic references for quasi-metric spaces are [3] and [4] and for \(\epsilon\)-fixed point is [6].

Each quasi-metric \(d\) on \(X\) generates a \(T_0\)-topology \(T(d)\) on \(X\) which has as a base the family of open \(d\)-balls \(B_d(x, \epsilon) := \{y \in X : d(x, y) < \epsilon\}\) for all \(x \in X\) and \(\epsilon > 0\).

If \(d\) is a quasi-metric on \(X\), then the function \(d^*\) defined on \(X \times X\) by \(d^*(x, y) = \max\{d(x, y), d(y, x)\}\), is a metric on \(X\).

Theorem 1.4. [6] Let \((X, p)\) be a dualistic partial metric space and \(T : X \to X\) be a map, \(x_0 \in X\) and \(\epsilon > 0\). If \(d_p(T^n(x_0), T^{n+k}(x_0)) \to 0\) as \(n \to \infty\) for some \(k > 0\), then \(T^k\) has an \(\epsilon\)-fixed point.

2. **Main Results**

In this section, we give some results on fixed point and \(\epsilon\)-fixed point in dualistic partial metric space and its diameter.

Definition 2.1. An open ball for a dualistic partial metric \(p : X \times X \to \mathbb{R}\) is a set of the form \(B^p(x) := \{y \in X : p(x, y) < \epsilon\}\) for each \(\epsilon > 0\) and \(x \in X\).
Theorem 2.2. Let \((X, p)\) be a dualistic partial metric space and \(K, Y\) be subsets of \(X\). Also, let \(\alpha : K \rightarrow Y\) and \(\beta : Y \rightarrow K\) be two maps. Then
\(T = \beta \alpha : K \rightarrow K\) has a fixed point if and only if \(S = \alpha \beta : Y \rightarrow Y\), has a fixed point. In other words, given the commutative diagrams:

\[
\begin{align*}
\begin{array}{ccc}
K & \xrightarrow{T} & K \\
\alpha \downarrow & & \downarrow \beta \\
Y & \xrightarrow{\beta} & K
\end{array} & \text{and} & \begin{array}{ccc}
Y & \xrightarrow{\beta} & K \\
\downarrow & & \downarrow \alpha \\
K & \xrightarrow{\alpha} & Y
\end{array}
\end{align*}
\]

we have: \(F(T) \neq \emptyset \iff F(S) \neq \emptyset\).

Proof. If \(y_0\) is a fixed point of \(\beta \alpha\) then it follows that \(\alpha(y_0) = \alpha \beta[\alpha(y_0)]\). \(\Box\)

Definition 2.3. [6] Let \((X, p)\) be a dualistic partial metric space and
\(T : X \rightarrow X\) be a map. Then \(x_0 \in X\) is \(\epsilon\)-fixed point for \(T\) if
\[
d_p(Tx_0, x_0) \leq \epsilon.
\]

We say \(T\) has the \(\epsilon\)-fixed point property if for some \(\epsilon > 0\), \(AF(T) \neq \emptyset\) where

\[
AF(T) = \{x_0 \in X : d_p(Tx_0, x_0) \leq \epsilon\}.
\]

Theorem 2.4. Let \((X, p)\) be a dualistic partial metric space and \(K, Y\) be subsets of \(X\). Also, let \(\alpha : K \rightarrow Y\) and \(\beta : Y \rightarrow K\) be two maps and
\(AF(T) = AF(\alpha)\). Then \(T = \beta \alpha : K \rightarrow K\) has an approximate fixed point if and only if \(S = \alpha \beta : Y \rightarrow Y\), has an approximate fixed point. In other words, given the commutative diagrams:

\[
\begin{align*}
\begin{array}{ccc}
K & \xrightarrow{T} & K \\
\alpha \downarrow & & \downarrow \beta \\
Y & \xrightarrow{\beta} & K
\end{array} & \text{and} & \begin{array}{ccc}
Y & \xrightarrow{\beta} & K \\
\downarrow & & \downarrow \alpha \\
K & \xrightarrow{\alpha} & Y
\end{array}
\end{align*}
\]
we have: \(AF(T) \neq \emptyset \Leftrightarrow AF(S) \neq \emptyset \).

Proof. Since \(AF(T) \neq \emptyset \), by Definition 2.3:

\[
d(Ty_0, y_0) \leq \epsilon \Leftrightarrow d(\beta \alpha(y_0), y_0) \leq \epsilon \\
\Leftrightarrow d(\alpha[\beta \alpha(y_0)], \alpha(y_0)) \leq \epsilon \\
\Leftrightarrow d(Sy_0, y_0) \leq \epsilon.
\]

Thus \(AF(T) \neq \emptyset \Leftrightarrow AF(S) \neq \emptyset \). \(\square \)

Theorem 2.5. Let \((X, p)\) be a complete dualistic partial metric space and \(T : X \to X \) be a map such that for all \(x, y \in X \)

\[
p(Tx, Ty) \leq cp(x, y) \ ; \ 0 \leq c < 1.
\]

Then \(T \) has a unique fixed point \(u \), and \(T^n(x) \to u \) as \(n \to \infty \) for each \(x \in X \).

Proof. We shall show that for any given \(x \in X \), the sequence \(\{T^n(x)\} \) of iterates convergent to a fixed point. For this purpose, first of all observe that \(p(Tx, T^2x) \leq cp(x, Tx) \) and by induction, \(p(T^nx, T^{n+1}x) \leq c^n p(x, Tx) \) for all \(n > 0 \). Thus, for any \(n > 0 \) and any \(k > 0 \), we have

\[
d_p(T^n(x), T^{n+k}(x)) \leq \sum_{i=n}^{n+k-1} d_p(T^i(x), T^{i+1}(x))
\]

\[
\leq (c^n + \cdots + c^{n+k-1}) (p(x, T(x)) - p(x, x))
\]

\[
\leq \frac{c^n}{1-c} (p(x, T(x)) - p(x, x))
\]

\[
= \frac{c^n}{1-c} d_p(x, T(x)).
\]

Since \(c < 1 \), then \(c^n \to 0 \). So by Lemma 1.3, \(\{T^n(x)\} \) is a cauchy sequence in \((X, d_p)\). Hence \(T^n(x) \to u \) for some \(u \in X \). By continuity of \(T \), we should have \(T(T^n(x)) \to Tu \). But \(\{T^{n+1}(x)\} \) is a subsequence of \(\{T^n(x)\} \), so \(Tu = u \) and \(u \) is a fixed point for \(T \). Therefore, we have shown that for each \(x \in X \), the limit of the sequence \(\{T^n(x)\} \) exists.
and is a fixed point, since we will show that T has at most one fixed point, and so every sequence $\{T^n(x)\}$ should be convergent to the same point. At the end we show the uniqueness of the fixed point of T: for if $T(x_0) = x_0$ and $T(y_0) = y_0$. Then $x_0 \neq y_0$ gives the contradiction:

$$
\begin{align*}
 d_p(x_0, y_0) &= d_p(T(x_0), T(y_0)) \\
 &= p(T(x_0), T(y_0)) - p(T(x_0), T(x_0)) \\
 &\leq c(p(x_0, y_0) - p(x_0, x_0)) \\
 &< p(x_0, y_0) - p(x_0, x_0) \\
 &= d_p(x_0, y_0).
\end{align*}
$$

\[\square\]

Corollary 2.6. Let (X, p) be a complete dualistic partial metric space and $B_p = B_p(y_0, r) = \{y : d_p(y, y_0) < r\}$. Let $T : B_p \to X$ be a map such that for all $x, y \in X$

$$
 p(Tx, Ty) \leq cp(x, y) ; 0 < c < 1.
$$ \(1\)

If $d_p(Ty_0, y_0) < (1 - c)r$, then T has a fixed point.

Proof. Choose $\epsilon > r$, so that $d_p(Ty_0, y_0) \leq (1 - c)r < (1 - c)\epsilon$. We show that T maps the closed ball $K = \{y : d_p(y, y_0) \leq \epsilon\}$ into itself: for if $y \in K$, then

$$
\begin{align*}
 d_p(T(y), y_0) &\leq d_p(T(y), T(y_0)) + d_p(T(y_0), y_0) \\
 &\leq cp(y, y_0) + (1 - c)\epsilon \\
 &\leq c\epsilon + \epsilon - c\epsilon = \epsilon.
\end{align*}
$$

Since K is complete and $T : K \to K$ satisfies in (1) thus by Theorem 2.5, T has a fixed point. \[\square\]

Theorem 2.7. Let (X, p) be a complete dualistic partial metric space and $T : X \to X$ be a map, not necessarily continuous. For each $\epsilon > 0$ there is a $\theta(\epsilon) > 0$ such that if $d_p(x, Tx) < \theta(\epsilon)$, then $T[B_d(x, \epsilon)] \subset B_d(x, \epsilon)$. Also, if $d_p(T^n(p_0), T^{n+1}(p_0)) \to 0$ for some $p_0 \in X$, the sequence $\{T^n(p_0)\}$ converges to a fixed point of T.
Proof. We consider $T^n(p_0) = x_n$. First we show that $\{x_n\}$ is a Cauchy sequence. since $d_p(x_N, Tx_N) < \theta(\epsilon)$, we have $T[B_d(x_N, \epsilon)] \subset B_d(x_N, \epsilon)$. So $Tx_N = x_{N+1} \in B(x_N, \epsilon)$ and, by induction, $Tx_N = x_{N+k} \in B(x_N, \epsilon)$ for all $k \geq 0$. Thus, $d_p(x_m, x_n) < 2\epsilon$ for all $m, n \geq N$ and $\{x_n\}$ is Cauchy sequence. Therefore it converges to some $x_0 \in X$. Now we show that x_0 is a fixed point for T. Let $d_p(x_0, Tx_0) = b > 0$, we can choose $x_n \in B(x_0, \frac{b}{3})$ such that $d_p(x_n, x_{n+1}) < \theta\frac{b}{3}$: we have $T[B_d(x_N, \frac{b}{3})] \subset B_d(x_N, \frac{b}{3})$ by hypothesis, so $Tx_0 \in B(x_0, \frac{b}{3})$. But this is impossible because $d_p(Tx_0, x_n) \geq d_p(Tx_0, x_0) - d_p(x_0, x_0) \geq \frac{2b}{3}$. Thus $Tx_0 \notin B(x_0, \frac{b}{3})$ and so $d_p(x_0, Tx_0) = 0$. □

Theorem 2.8. Let (X, p) be a complete dualistic partial metric space and $T : X \to X$ be a map satisfying

$$p(Tx, Ty) \leq \eta|p(x, y)|,$$

where $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ is any nondecrasing (not necessarily continuous) function such that $\eta^n(t) \to 0$ as $n \to \infty$ for each $t > 0$. Then T has a unique fixed point p_0, and $T^n(x) \to p_0$ as $n \to \infty$ for $x \in X$.

Proof. Observe that $\eta(t) < t$ for each $t > 0$, for if $t \leq \eta(t)$ for some $t > 0$, then monotonicity of η gives that $\eta(t) \leq \eta[\eta(t)]$ and by induction, $t \leq \eta^n(t)$ for all $n > 0$. So we have $p(Tx, T^2x) \leq cp(x, Tx)$ and by induction $p(T^n x, T^{n+1} x) \leq c^n p(x, Tx)$ for all $n > 0$. Fix $x \in X$. Then clearly for each $x \in X$

$$|p(T^n x, T^{n+1} x)| \leq c^n|p(x, x)|$$

and

$$|p(T^n x, T^{n+1} x)| \leq c^n|p(x, Tx)|.$$

Also,

$$d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) = p(T^n x, T^{n+1} x).$$

Hence we deduce that

$$d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) \leq c^n|p(x, Tx)|.$$
Thus we get
\[d_p(T^n(x), T^{n+1}(x)) \leq \eta^n |p(x, Tx)| - |p(T^n x, T^n x)| \]
\[\leq \eta^n |p(x, Tx)| + |p(T^n x, T^n x)| \]
\[\leq \eta^n (|p(x, Tx)| - |p(x, x)|) \]
\[\leq \eta^n [d_p(x, Tx)]. \]

So \(d_p(T^n(x), T^{n+1}(x)) \to 0 \) as \(n \to \infty \) for each \(x \in X \). Now let \(\epsilon > 0 \) be given, and choose \(\theta(\epsilon) = \epsilon - \eta(\epsilon) \); if \(d_p(x, Tx) < \theta(\epsilon) \), then for any \(x_0 \in B_d(x, \epsilon) \) we have
\[d_p(Tx_0, x) \leq d_p(Tx_0, Tx) + d_p(Tx, x) < \eta[d_p(x_0, x)] + \theta(\epsilon) \leq \eta(\epsilon) + \epsilon - \eta(\epsilon) = \epsilon. \]

So \(Tx_0 \in B_d(x, \epsilon) \). Hence by Theorem 2.7, \(T \) has a fixed point. The remainder of the proof is obvious. \(\square \)

Theorem 2.9. Let \((X, p) \) be a complete dualistic partial metric space and \(T : X \to X \) be a map satisfying
\[p(Tx, Ty) \leq \beta(x, y)p(x, y), \]
where \(\beta : X \times X \to R^+ \) has the property for any closed interval \([a, b] \subset R^+ - \{\nu\}, \)
\[\sup\{\beta(x, y) : a \leq d_p(x, y) \leq b\} = \lambda(a, b) < 1. \]

Then \(T \) has an unique fixed point \(p \), and \(T^n(x) \to p \) as \(n \to \infty \) for each \(x \in X \).

Proof. For \(x \in X \), the sequence \(\{d_p(T^n(x), T^{n+1}(x))\} \) is nonincreasing, therefore it is convergent to some \(a \geq 0 \). We should have \(a = 0 \): otherwise, \(d_p(T^n(x), T^{n+1}(x)) \in [a, a + 1] \) for all large \(n \); then by choosing \(n \) and \(q = \lambda(a, a + 1) \), by induction we have
\[a \leq d_p(T^{n+k}(x), T^{n+k+1}(x)) \leq q^k d_p(T^n(x), T^{n+1}(x)) \leq q^k (a + 1) \]
for all \(k > 0 \), but \(q < 1 \), and is a contradiction. Now, suppose \(\epsilon > 0 \), \(\lambda = \lambda(\frac{1}{2}, \epsilon) \) and choose \(\theta = \min\{\frac{\epsilon}{2}, \epsilon(1 - \lambda)\} \). Let \(d_p(x, Tx) < \theta(\epsilon) \) and \(x_0 \in B_d(x, \epsilon) \) then
\[d_p(Tx_0, x) \leq d_p(Tx_0, Tx) + d_p(Tx, x). \]
If $d(x_0, x) < \frac{\varepsilon}{2}$: then
\[
d_p(Tx_0, x) \leq d_p(x_0, x) + d_p(Tx, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon;
\]
and if $\frac{\varepsilon}{2} \leq d(x_0, x) < \varepsilon$: then
\[
d_p(Tx_0, x) \leq \beta(x, y)d_p(x_0, x) + d_p(Tx, x) < \lambda \varepsilon + (1 - \lambda) \varepsilon = \varepsilon.
\]
Hence, $T |B_p(x, \varepsilon) \subset B_p(x, \varepsilon)$, and by Theorem 2.7, T has a fixed point. The remainder of the proof is obvious. □

Proposition 2.10. Let (X, p) be a dualistic partial metric space and $T : X \to X$ be a map such that T is asymptotic regular, i.e., for all $x \in X$
\[
d_p(T^n(x_0), T^{n+1}(x_0)) \to 0 \text{ as } n \to \infty.
\]
Then T has an ε–fixed point.

Proof. Since $d_p(T^n(x_0), T^{n+1}(x_0)) \to 0$ as $n \to \infty$ then for $\varepsilon > 0$, there exists $n_0 > 0$ such that for all $n \geq n_0$,
\[
d_p(T^n(x_0), T^{n+1}(x_0)) < \varepsilon.
\]
Then $d_p(T^{n_0}(x_0), T(T^{n_0}(x_0))) < \varepsilon$. Therefore $T^{n_0}(x_0)$ is an ε–fixed point of T. □

Theorem 2.11. Let T be a mapping of a dualistic partial metric space (X, p) into itself such that
\[
|p(Tx, Ty)| \leq c|p(x, y)| \quad 0 < c < d(\alpha(y_0), y_0)
\]
for all $x, y \in X$, and $\varepsilon > 0$. Then T^k has an ε–fixed point, for all k.

Proof. Fix $x \in X$. It is clear that for each $x \in N$
\[
|p(T^n x, T^{n+1}x)| \leq c^n|p(x, x)|
\]
also
\[
|p(T^n x, T^{n+1}x)| \leq c^n|p(x, Tx)|,
\]
and
\[d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) = p(T^n x, T^{n+1} x). \]
We deduce that
\[d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) \leq c^n |p(x, T x)|. \]
Hence
\[d_p(T^n x, T^n y) \leq c^n (|p(x, T x)| + |p(x, y)|). \]
Therefore for \(k, n \in \mathbb{N} \)
\[d_p(T^n x, T^{n+k} x) \leq d_p(T^n x, T^{n+1} x) + \ldots + d_p(T^{n+k} x, T^{n+k} x) \leq (c^n + \ldots + c^{n+k-1})(|p(x, T x)| + |p(x, y)|) \leq \frac{c^n}{1-c} (|p(x, T x)| + |p(x, y)|) \leq \frac{c^n}{1-c} [d_p(x, T x)]. \]
Thus \(\lim_{n \to \infty} d_p(T^{n+k} x, T^n x) = 0 \) as \(n \to \infty \). Therefore by Proposition 2.10 \(T^k \) has an \(\epsilon \)-fixed point. \(\square \)

If we take \(T : X \to X \) in Theorem 2.2 of [7], we have the following corollary.

Corollary 2.12. Let \((X, p)\) be a dualistic partial metric space and \(T : X \to X \) be a mapping and \(\epsilon > 0 \). Also, let
\[d_p(T x, T y) \leq \alpha d_p(x, y) + \beta (d_p(x, T x) + d_p(y, T y)) \]
for all \(x, y \in X \), where \(\alpha, \beta \geq 0 \) and \(\alpha + 2\beta < 1 \). Then \(T \) has an \(\epsilon \)-fixed point.

Example 2.13. Let \(X = (-\infty, 2] \), and let \(p \) be the dualistic metric on \(X \) given by
\[p(x, y) = \max\{x, y\} \]
for all \(x, y \in X\).
Let \(T\) be the mapping from \(X\) into itself defined by \(T(x) = x - 1\), for all \(X = (-\infty, 2]\). It is immediate to see that
\[
p(T(x), T(y)) \leq \frac{1}{2} p(x, y)
\]
for all \(x, y \in X\). However \(T\) does not have any fixed point. But by Proposition 2.10, for some \(\epsilon > 0\), \(T\) has a \(\epsilon\)-fixed point.

Definition 2.14. Let \((X, p)\) be a dualistic partial metric space, \(T : X \to X\), be continues map and \(\epsilon > 0\). We define diameter \(AF(T)\) by
\[
diam(AF(T)) = \sup \{d_p(x, y) : x, y \in AF(T)\}.
\]
If we take \(T : X \to X\) in Theorem 2.8 of [7], we have the following corollary.

Corollary 2.15. Let \(T : X \to X\) and \(\epsilon > 0\). If there exists \(\alpha \in [0, 1]\) such that for all \(x, y \in X\)
\[
d_p(Tx, Ty) \leq \alpha d_p(x, y),
\]
then
\[
diam(AF(T)) \leq \frac{2\epsilon}{1 - \alpha}.
\]

References

Seyed Ali Mohammad Mohsenalhosseini
Department of Mathematics
Faculty of Mathematics
Assistant Professor of Mathematics
Vali-e-Asr University
Rafsanjan, Iran
E-mail: amah@vru.ac.ir

Hamid Mazaheri
Department of Mathematics
Faculty of Mathematics
Associate Professor of Mathematics
Yazd University
Yazd, Iran
E-mail: hmazaheri@yazduni.ac.ir