On Topological Spaces X Determined by the Torsion Elements of $C(X)$

A. Rezaei Aliabad*

Chamran University

M. Motamedi

Chamran University

Abstract. Let $C(X)$ be the ring of real continuous functions on a Tychonoff space X and $T(X)$ be the set of all torsion elements of $C(X)$. We prove that if X and Y are two zero dimensional compact spaces, then $X \simeq Y$ if and only if the rings generated by $T(X)$ and $T(Y)$ are isomorphic.

AMS Subject Classification: 54C40; 16U60.

Keywords and Phrases: Group of units of $C(X)$, torsion subgroup, socle of a group, maximal subgroup, Frattini subgroup, \mathcal{P}-filter, \mathcal{P}-ultrafilter

1. Introduction

Throughout this paper, all topological spaces X that we consider are Tychonoff and $C(X)$ ($C^*(X)$) stands for the ring of continuous (bounded) real functions on a topological space X. Suppose $f \in C(X)$, we denote the set $f^{-1}\{0\}$ by $Z(f)$, its complement by $Coz(f)$, and the collection of all zero-sets in X by $Z(X)$. For undefined terms and notions, see [8]. We denote the group of units of the ring R by $U(R)$. Suppose that G is an abelian group, by $H \leq G$ we mean that H is a subgroup of G, by $T(G)$...
we mean the torsion subgroup of G. For the sake of simplicity, $U(C(X))$ and $T(U(C(X)))$ will be denoted by $U(X)$ and $T(X)$, respectively. The set \(\{ f \in U(X) : f(x) > 0, \forall x \in X \} \) is denoted by $U^+(X)$. Suppose $f \in U(X)$, we denote the set $f^{-1}\{1\}$ by $e(f)$ and its complement by $Coe(f)$. One can easily see that \{ $e(f) : f \in U(X)$ \} = $Z(X)$. By $Max(G)$ we mean the set of all maximal subgroups of G.

In Section 2, we obtain some general facts about $U(X)$. In particular, in the same section we observe that $U(X)$ is direct product of its torsion subgroup $T(X)$ and $U^+(X)$. In Sections 3, we will focus on $T(X)$ and prove, as the main result, that if X and Y are compact zero dimensional spaces, then $X \simeq Y$ if and only if the rings generated by $T(X)$ and $T(Y)$ are isomorphic.

2. Preliminary Results

We first discuss on cardinality of $U(X)$. Let $B_{C^*(0,1)}$ be the unit ball with center 0. Define $\varphi : C(X) \rightarrow B_{C^*(0,1)}$ by $\varphi(f) = \frac{f}{1+|f|}$, then clearly φ is one to one. Therefore, for any topological space X, we have $|C(X)| = |B_{C^*(0,1)}|$. Now, suppose that $\varphi : B_{C^*(0,1)} \rightarrow U^+(X) \cap C^*(X)$ by $\varphi(f) = f + 2$. It is clear that φ is well defined, one-one and thus $|C(X)| = |B_{C^*(0,1)}| \leq |U^+(X) \cap C^*(X)| \leq |U^+(X)| \leq |U(X)| \leq |C(X)|$. Therefore $|U^+(X)| = |U(X)| = |C(X)| = |C^*(X)|$.

Proposition 2.1. The following statements hold.

(a) $T(X) = \{ f \in U(X) : f^2 = 1 \}$ and it is a subgroup of $U(X)$.

(b) The cardinality of the set of torsion free elements is the same as the cardinality of $U(X)$.

(c) $T(X) = \{-1, 1\}$ if and only if X is connected.

Proof. (a) and (b) are clear.

(c \Rightarrow) Suppose that A is a clopen subset (i.e., closed open subset) of X. Put $\lambda_A = \chi_A - \chi_{A^c}$ (from now on, we use λ_A for $\chi_A - \chi_{A^c}$ where χ_A is the characteristic function on A). By hypothesis, $\lambda_A = -1$ or 1. Therefore, $A = \emptyset$ or $A = X$ and consequently X is connected.

(c \Leftarrow) Assume that X is connected and $f \in T(X)$. Then $f(X) \subseteq \{-1, 1\}$
and it follows that f is constant. Therefore $f = -1$ or 1. □

Let \mathcal{P} be the set of all clopen subsets of X. Clearly X is zero dimensional if and only if \mathcal{P} is a base for open subset of X. Moreover, the map $f \mapsto e(f)$ makes a one-to-one correspondence between $T(X)$ and \mathcal{P} and hence $|T(X)| = |\mathcal{P}|$.

Proposition 2.2. Let α be the cardinality of the set of connected component of a topological space X. Then
(a) $|T(X)| \leq 2^{\alpha}$ and the inequality may be strict.
(b) If α is finite, then $|T(X)| = 2^\alpha$.

Proof. (a) It is enough to show that $|\mathcal{P}| \leq 2^\alpha$. To see this, letting \mathcal{A} be the set of connected component of X, we define $\phi: \mathcal{P} \to \mathcal{P}(\mathcal{A})$ with $\phi(P) = \{C \in \mathcal{A} : C \subseteq P\}$. We can easily see that ϕ is one-one and so we are done. Now, if we put $X = \mathbb{N}^*$ where \mathbb{N}^* is the one point compactification of \mathbb{N}, then the cardinality of the family of clopen subsets of \mathbb{N}^* is equal to $\aleph_0 = |T(X)|$.
(b) It is evident.

The socle $S(G)$ of an abelian group G consists of all $g \in G$ such that the order of g is a square free integer, see [7]. $S(G)$ is a subgroup of G; it is equal to $\{1\}$ if and only if G is torsion free and it is equal to G if and only if G is an elementary group, in the sense that every element has a square free order. It is clear that $S(G) \subseteq T(G)$. Therefore, by Proposition 2.1, we conclude that $S(U(X)) = T(X)$. □

The following fact, although easy to prove, is a key result for the remainder of the paper.

Theorem 2.3. For any topological space X, $U(X)$ is the direct product of $U^+(X)$ and $T(X)$.

Proof. It is clear that $f = |f|\text{sgn}(f)$ for any $f \in U(X)$ and $U^+(X) \cap T(X) = \{1\}$. □

Theorem 2.4. The following statements hold.
(a) If $K \in \text{Max}(U(X))$, then $U^+(X) \subseteq K$.

www.SID.ir
(b) $K \in \text{Max}(U(X))$ if and only if there exists $H \in \text{Max}(T(X))$ such that $K = U^+(X)H$.

(c) If $K \leq U(X)$, then $K \in \text{Max}(U(X))$ if and only if $|U(X)/K| = 2$.

Proof. (a) There exists a prime number p such that $|U(X)/K| = p$, then $f^p \in K$ for any $f \in U(X)$. Now, let $f \in U^+(X)$, then $f = (f^p)^p \in K$.

(b ⇒) Using the part (a) and Theorem 2.3, we get $K = U^+(X)H$ where $H = K \cap T(X)$.

(b ⇐) It is clear.

(c) By assumption, $|U(X)/K|$ is a prime number. On the other hand, by (b), $H \leq T(X)$ exists such that $K = U^+(X)H$, thus $U(X)/K \simeq T(X)/H$ and since every element of $T(X)$ is of order 2, $|U(X)/K| = 2$. □

Recall that the Frattini subgroup of a group G is the intersection of all maximal subgroups of G, this subgroup is denoted by $\Phi(G)$, thus $\Phi(G) = \cap_{H \in \text{Max}(G)} H$.

Proposition 2.5. For any topological space X we have

(a) $\Phi(T(X)) = \{1\}$;

(b) $\Phi(U(X)) = U^+(X)$.

Proof. (a) Let $1 \neq f \in T(X)$, hence there exists $x \in X$ such that $f(x) \neq 1$. One can easily see that $H_x = \{g \in T(X) : x \in e(g)\} \in \text{Max}(T(X))$ and since $f \notin H_x$, we are through.

(b) It is clear that $\Phi(U(X)) = U^+(X)\Phi(T(X)) = U^+(X)$. □

We conclude this section by the following remark which is useful for the next section and helps us to find an example of two zero dimensional compact spaces X and Y such that $T(X) \simeq T(Y)$ but $X \not\simeq Y$.

Remark 2.6. The subgroup $T(X)$ is indeed the maximal torsion subgroup of $U(X)$ and is \mathbb{Z}_2-vector space (via $(n,f) \rightarrow f^n$). Clearly $\varphi : T(X) \rightarrow T(Y)$ is a group homomorphism if and only if it is a vector space homomorphism. Let V be a vector space over a field F and S be a base for V. If $|F|$ and $|S|$ are finite, then $V \simeq F^{|S|}$ and so $|V| = |F|^{|S|}$. Also, if $|F|$ or $|S|$ is infinite, then $|V| = \max\{|F|,|S|\}$. Therefore, if V
and W are F-vector spaces and $|V| = |W|$, then $V \simeq W$ whenever one of the following holds.
(a) F is finite.
(b) $|F| < |V|$.

3. Zero Dimensionality is a Torsion Property

To give the main result of the paper we need to introduce and study a class of subgroups of $T(X)$ and \mathcal{P}-filters on X.

The next two simple facts are needed.

Proposition 3.1. The following statements are equivalent.
(a) $H \in \text{Max}(T(X))$.
(b) $fg \in H$ if and only if $f, g \in H$ or $f, g \notin H$.

Proof. Since $H \in \text{Max}(T(X))$ if and only if $|T(X)/H| = 2$, it is easy to prove. □

Lemma 3.2. Let $f, g \in T(X)$, then
$$e(fg) = (e(f) \cap e(g)) \cup (\text{Coe}(f) \cap \text{Coe}(g)).$$

Proof. It is evident. □

Proposition 3.3. Let X be a topological space and $p \in \beta X$, then $H^p = \{f \in T(X) : p \in cl_{\beta X}e(f)\}$ is a maximal subgroup of $T(X)$.

Proof. Suppose that $fg \in H^p$, by Lemma 3.2
$$p \in cl_{\beta X}e(fg) = cl_{\beta X}[(e(f) \cap e(g)) \cup (\text{Coe}(f) \cap \text{Coe}(g))]$$
$$= (cl_{\beta X}e(f) \cap cl_{\beta X}e(g)) \cup (cl_{\beta X}\text{Coe}(f) \cap cl_{\beta X}\text{Coe}(g)).$$
Thus, $p \in (cl_{\beta X}e(f) \cap cl_{\beta X}e(g))$ or $p \in (cl_{\beta X}\text{Coe}(f) \cap cl_{\beta X}\text{Coe}(g))$ and by Proposition 3.1, $H^p \in \text{Max}(T(X))$. □

In this section, as we mentioned earlier, $\mathcal{P}(X)$ (briefly \mathcal{P}) stands for the set of all clopen subsets of X and by \mathcal{P}-filter we mean a filter whose
elements are clopen subsets, see ([11] 12E). It is easy to see that if \(F \) is a \(\mathcal{P} \)-filter, then

\[
e^{-1}(\mathcal{F}) = \{ f : e(f) \in \mathcal{F} \}
\]

is a subgroup of \(T(X) \). On the other hand \(ee^{-1}(\mathcal{F}) = \mathcal{F} \) for every \(\mathcal{P} \)-filter \(\mathcal{F} \) on \(X \) and since \(e(f) = e(g) \) implies \(f = g \) for every \(f, g \in T(X) \), \(H = e^{-1}e(H) \) for every \(H \leq T(X) \). But if \(H \) is a subgroup of \(T(X) \), then \(e(H) = \{ e(f) : f \in H \} \) is not necessarily a \(\mathcal{P} \)-filter. As an example, \(H = \{-1, 1\} \) is a subgroup of \(T(X) \) while \(e(H) \) has not even finite intersection property.

Proposition 3.4. Let \(X \) be a topological space and \(H \leq T(X) \), then the following statements are equivalent.

(a) There exists \(p \in \beta X \) such that \(H = Hp \).

(b) \(e(H) \) is a \(\mathcal{P} \)-ultrafilter.

(c) The family \(e(H) \) has the finite intersection property and is maximal with respect to this property.

Proof. (a)⇒(b) Let \(f_1, \ldots, f_n \in H \). By definition, \(p \in \cap_{i=1}^n \text{cl}_{\beta X} e(f_i) = \text{cl}_{\beta X} (\cap_{i=1}^n e(f_i)) \) and this implies \(\cap_{i=1}^n e(f_i) \neq \emptyset \), thus \(e(H) \) has the finite intersection property, and there exists a \(\mathcal{P} \)-ultrafilter \(\mathcal{F} \) containing \(e(H) \). Therefore, \(H = e^{-1}e(H) \subseteq e^{-1}(\mathcal{F}) \). Now, since \(H \) is maximal, \(H = e^{-1}(\mathcal{F}) \) and hence \(e(H) = ee^{-1}(\mathcal{F}) = \mathcal{F} \).

(b)⇒(c) It is clear.

(c)⇒(a) Suppose that \(H \) satisfies the condition (c). Since \(\beta X \) is compact, there exists \(p \in \beta X \) such that \(p \in \cap_{f \in H} \text{cl}_{\beta X} e(f) \). Clearly \(Hp \) has the finite intersection property and contains \(H \). Therefore, \(H = Hp \). \(\square \)

Proposition 3.5. Let \(X \) be a topological space and \(\mathcal{F} \) be a \(\mathcal{P} \)-filter on \(X \), then \(e^{-1}(\mathcal{F}) \) is a maximal subgroup of \(T(X) \) if and only if \(\mathcal{F} \) is a \(\mathcal{P} \)-ultrafilter on \(X \).

Proof. \(\Rightarrow \) Let \(e^{-1}(\mathcal{F}) \) be a maximal subgroup of \(T(X) \), we have to show that \(\mathcal{F} \) is a \(\mathcal{P} \)-ultrafilter. Let \(\mathcal{F} \subseteq \mathcal{G} \), then \(e^{-1}(\mathcal{F}) \subseteq e^{-1}(\mathcal{G}) \) and \(e^{-1}(\mathcal{F}) = e^{-1}(\mathcal{G}) \). We infer that \(\mathcal{F} = ee^{-1}(\mathcal{F}) = ee^{-1}(\mathcal{G}) = \mathcal{G} \) and hence \(\mathcal{F} \) is a \(\mathcal{P} \)-ultrafilter.
ON TOPOLOGICAL SPACES X DETERMINED ...

\(\Rightarrow \) Since \(ee^{-1}(F) = F \) is a \(\mathcal{P} \)-ultrafilter, by Proposition 3.4, it follows that \(e^{-1}(F) \) is a maximal subgroup of \(T(X) \). \(\square \)

Let \(X \) be a topological space, we will denote by \(M^* \) the set of all maximal subgroups of \(T(X) \) which are of the form \(H^p \). Given \(f \in T(X) \), we define \(M^*(f) = \{ M \in M^* : f \in M \} \) and \(M^*_f = \bigcap M^*(f) \).

Proposition 3.6. Let \(X \) be a topological space, then the following statements are equivalent.

(a) \(e(f) \subseteq e(g) \).
(b) \(g \in \bigcap M^*(f) \).
(c) \(M^*(f) \subseteq M^*(g) \).
(d) \(M^*_g \subseteq M^*_f \).

Proof. (a \(\Rightarrow \) b) Let \(f \in H^p \in M^*(f) \), then \(p \in cl_{\beta X}e(f) \subseteq cl_{\beta X}e(g) \) and so \(g \in H^p \). Hence \(g \in \bigcap M^*(f) \).
(b \(\Rightarrow \) c) and (c \(\Rightarrow \) d) are trivial.
(d \(\Rightarrow \) a) Let \(x \in e(f) \), then \(f \in H^x \) and so \(g \in M^*_g \subseteq M^*_f \subseteq H^x \). Therefore \(x \in e(g) \). \(\square \)

Recall that a topological space \(X \) is called strongly zero dimensional if every two completely separated closed set can be separated by two disjoint clopen subsets of \(X \), see ([4] 6.2).

In the following proposition, only the part (d) may not be well-known.

Proposition 3.7. Let \(X \) be a Tychonoff space. Then the following statements are equivalent.

(a) \(X \) is strongly zero dimensional.
(b) Every two disjoint \(Z_1, Z_2 \in Z(X) \) separate with two disjoint open-closed subset of \(X \).
(c) If \(Z \in Z(X) \), \(V \in Coz(X) \) and \(Z \subseteq V \), then there exists an open-closed subset \(U \) of \(X \) such that \(Z \subseteq U \subseteq V \).
(d) The set \(\{ cl_{\beta X}e(f) : f \in T(X) \} \) is an open base for \(\beta X \).
(e) \(\beta X \) is a zero dimensional space.
(f) \(\beta X \) is a strongly zero dimensional space.

Proof. We only prove (c) \(\Rightarrow \) (d), for the reminder of the proof, see ([4] 6.2).
6.2). Suppose that W is an open subset of βX and $p \in W$. Clearly there exist a zero set A and a cozero set V in βX such that

$$p \in \text{int}_{\beta X} A \subseteq A \subseteq V \subseteq \text{cl}_{\beta X} V \subseteq W.$$ \hfill (1)

By (c), there exists a clopen subset U of X such that

$$A \cap X \subseteq U \subseteq V \cap X.$$ \hfill (2)

Both (1) and (2) implies that

$$p \in \text{cl}_{\beta X} \text{int}_{\beta X} A = \text{cl}_{\beta X} (X \cap \text{int}_{\beta X} A) \subseteq \text{cl}_{\beta X} (X \cap U) \subseteq \text{cl}_{\beta X} V \subseteq W.$$

Clearly $U = e(f)$ for some $f \in T(X)$ and so we are through. \hfill \Box

Proposition 3.8. Let X be a topological space, then

(a) The set $\{\mathcal{M}^*(f) : f \in T(X)\}$ is a base for the closed sets of a topology on \mathcal{M}^*, which we call it the Zariski-like topology;

(b) \mathcal{M}^* with Zariski-like topology is compact;

(c) If X is strongly zero dimensional, then \mathcal{M}^* with this topology is Hausdorff.

Proof.

(a) It is clear that for every $f, g \in T(X)$, $e(f) \cup e(g)$ is both open and closed in X and hence there exists $h \in T(X)$ such that $e(h) = e(f) \cup e(g)$. It is enough to show that $\mathcal{M}^*(f) \cup \mathcal{M}^*(g) = \mathcal{M}^*(h)$. To prove this

$$H^p \in \mathcal{M}^*(f) \cup \mathcal{M}^*(g) \iff p \in \text{cl}_{\beta X} e(f) \cup \text{cl}_{\beta X} e(g) = \text{cl}_{\beta X} e(h) \iff H^p \in \mathcal{M}^*(h).$$

(b) Suppose $\{\mathcal{M}^*(f_\alpha)\}_{\alpha \in A}$ is a family of basic closed subset of \mathcal{M}^* with the finite intersection property. We can easily see that $\{\text{cl}_{\beta X} e(f_\alpha)\}_{\alpha \in A}$ has the finite intersection property and consequently there exists $p \in \beta X$ such that $p \in \cap_{\alpha \in A} \text{cl}_{\beta X} e(f_\alpha)$. Therefore

$$\forall \alpha \in A, \ f_\alpha \in H^p \iff \forall \alpha \in A, \ H^p \in \mathcal{M}^*(f_\alpha) \iff H^p \in \bigcap_{\alpha \in A} \mathcal{M}^*(f_\alpha)$$

$$\therefore \bigcap_{\alpha \in A} \mathcal{M}^*(f_\alpha) \neq \emptyset.$$
(c) Let $H^p, H^q \in M^*$ where $p \neq q$. Since X is strongly zero dimensional, by Proposition 3.7, there exists $f \in T(X)$ such that $p \in cl_{\beta X}(f)$, $q \notin cl_{\beta X}(f)$ and so $p \notin cl_{\beta X}(-f)$, $q \notin cl_{\beta X}(-f)$. Therefore, $H^p \notin M^*(-f)$, $H^q \notin M^*(f)$ and $M^*(f) \cup M^*(-f) = M^*$. □

Proposition 3.9. Let X be a zero dimensional compact topological space, then $\varphi : X \rightarrow M^*$ defined by $\varphi(p) = H^p$ induces a homeomorphism between X and M^*.

Proof. It is clear that φ is bijection. It is sufficient to show that this function maps a base for X to a base for M^*. To this end we write

$$\varphi(e(f)) = \{\varphi(p) \in X : p \in e(f)\}$$

$$= \{H^p \in M^* : p \in e(f)\} = \{H^p \in M^* : f \in H^p\} = M^*(f)$$

which completes the proof. □

Definition 3.10. Let X and Y be topological spaces. $T(X)$ and $T(Y)$ are said to be strongly isomorphic if there exists an isomorphism from $T(X)$ to $T(Y)$ such that it maps $M^*(T(X))$ onto $M^*(T(Y))$.

Proposition 3.11. If X and Y are zero dimensional compact topological spaces, then X and Y are homeomorphic if only if $T(X)$ and $T(Y)$ are strongly isomorphic.

Proof. \Rightarrow) Let $\psi : X \rightarrow Y$ be a homeomorphism. We define $\varphi : T(Y) \rightarrow T(X)$ by $\varphi(g) = g \circ \psi$. It can be easily shown that φ is an isomorphism. We show that φ is onto. Supposing $f \in T(X)$, we put $g = f \circ \psi^{-1}$. It is easy to show that $g \in T(Y)$ and $\varphi(g) = f$. Now, let $p \in X$ and $q = \psi(p)$, then

$$g \in H^q(Y) \iff g(q) = 1 \iff g\psi\psi^{-1}(q) = 1 \iff g\psi(p) = 1$$

$$\iff g \circ \psi \in H^p(X) \iff \varphi(g) \in H^p(X).$$

\Leftarrow) By Proposition 3.9 and the hypothesis, it is clear that

$$X \simeq M^*(T(X)) \simeq M^*(T(Y)) \simeq Y.$$ □
Proposition 3.12. If \(X \) and \(Y \) are topological spaces, then the following statements are equivalent.

(a) \(T(X) \cong T(Y) \).
(b) \(|T(X)| = |T(Y)| \).
(c) \(|\mathcal{P}(X)| = |\mathcal{P}(Y)| \).

Proof. (a) \(\iff \) (b) is clear, by Remark 2.6. Recall that \(|T(X)| = |\mathcal{P}(X)| \) for any topological space \(X \), so (b) \(\iff \) (c) is also clear. \(\square \)

Example 3.13. Let \(\mathbb{Q}^* \) be the one point compactification of the \(\mathbb{Q} \), \(\omega_1 \) be the smallest uncountable ordinal and \(W^* = \{ \alpha : \alpha \text{ is an ordinal and } \alpha \leq \omega_1 \} \). One can easily see that \(|T(\mathbb{Q}^*)| = \mathfrak{c} = |T(W^*)| \) and by Proposition 3.12, \(T(\mathbb{Q}^*) \cong T(W^*) \) while \(|\mathbb{Q}^*| \neq |W^*| \). Now, suppose \(|A| = \mathfrak{c} \), \(X = \bigcup_{\alpha \in A} X_\alpha \) is the disjoint union of copies of \(\mathbb{Q} \), and \(X^* \) is the one point compactification of \(X \). Then clearly \(|X^*| = |W^*| \) and one can similarly show that \(T(X^*) \cong T(W^*) \) while \(X^* \not\cong W^* \). These examples show that \(T(X) \) and \(T(Y) \) can be isomorphic but not strongly isomorphic (even if \(|X| = |Y| \)). Note that if \(T(X) \) and \(T(Y) \) are strongly isomorphic, then it may there exists an isomorphism between them which is not strong; it is sufficient to define an isomorphism such that sends \(f \neq -1 \) to \(-1\).

Definition 3.14. We say that a subgroup \(H \) of \(T(X) \) is saturated if \(f \in H \) and \(e(f) \subseteq e(g) \) imply that \(g \in H \).

Lemma 3.15. Let \(H \leq T(X) \) be saturated. Then \(e(H) \) is closed under finite intersection.

Proof. Let \(f, g \in H \); it is enough to show that \(e(f) \cap e(g) \in e(H) \). For simplicity we let \(A = e(f) \) and \(B = e(g) \), then by assumption

\[
D = e(fg) \cup (A \setminus B) = (B \setminus A)^c \in e(H).
\]

Therefore, \(\lambda_D \in H \) and hence \(g\lambda_D \in H \). Thus, \(A \cap B = e(g\lambda_D) \in e(H) \). \(\square \)

Corollary 3.16. Let \(H \leq T(X) \), then \(e(H) \) is a \(\mathcal{P} \)-filter if and only if \(H \) is saturated and \(-1 \notin H \).
Corollary 3.17. A subgroup H of $T(X)$ is saturated if and only if $h \in H$ and $1 + h + f \in T(X)$ imply $-f \in H$.

Proof. \Rightarrow Suppose $h \in H$ and $1 + h + f \in T(X)$. It is clear that $e(h) \cap e(f) = \emptyset$ and hence $e(h) \subseteq e(-f)$. Thus $-f \in H$.

\Leftarrow Let $h \in H$ and $e(h) \subseteq e(f)$, thus $e(h) \cap e(-f) = \emptyset$. It is easy to see that $1 + h - f \in T(X)$ and hence $f \in H$. □

Corollary 3.18. $e(H)$ is a \mathcal{P}-filter if and only if $-1 \notin H$ and if $h \in H$ and $1 + h + f \in T(X)$, then $-f \in H$.

Proof. By Corollaries 3.16 and 3.17, it is clear. □

Definition 3.19. Let X be a topological space. We will denote by $RT(X)$ the ring generated by $T(X)$.

Proposition 3.20. If

$$ R = \{ f \in C(X), f(X) \text{ is finite, and } f(X) \subseteq 2\mathbb{Z} \text{ or } f(X) \subseteq 2\mathbb{Z} + 1 \}, $$

then $RT(X) = R$.

Proof. One can easily see that R is indeed a ring that contains $T(X)$ and consequently $RT(X) \subseteq R$. Now, let $f \in R$ i.e., $f \in C(X)$ and $f(X) = \{ m_1, \ldots, m_k \}$ is a subset of $2\mathbb{Z}$ or $2\mathbb{Z} + 1$. We have to show $f \in RT(X)$. It is clear that $A_i = f^{-1}\{ m_i \}$ is a clopen subset of X. Thus it is enough to prove that the equation $f = x_1 + \sum_{i=2}^{k} x_i A_i$ has a solution for x_1, \ldots, x_k in \mathbb{Z}. If we take $a_i \in A_i$ ($i = 1, \ldots, k$), then we get the following equations

$$ \begin{cases}
 x_1 - x_2 - x_3 - \cdots - x_k = m_1 \\
 x_1 + x_2 - x_3 - \cdots - x_k = m_2 \\
 \vdots \\
 x_1 - x_2 - x_3 - \cdots + x_k = m_k
\end{cases} $$

and we simply obtain the equivalent system of equations below.

$$ \begin{cases}
 x_1 - x_2 - x_3 - \cdots - x_k = m_1 \\
 x_2 = \frac{m_2 - m_1}{2} \\
 \vdots \\
 x_k = \frac{m_k - m_1}{2}
\end{cases} $$
Now, since all the elements of the set \(\{m_1, \ldots, m_k\} \) are even or all are odd, the above system has a solution in \(\mathbb{Z} \). \(\square \)

In [5] and [6] it is defined that
\[
C_C(X) = \{ f \in C(X) : f(X) \text{ is countable} \}
\]
and
\[
C^F(X) = \{ f \in C(X) : |f(X)| < \infty \}.
\]
Clearly the ring \(R \) in Proposition 3.20, is a subring of \(C^F(X) \). The following result is proved in [6].

Theorem 3.21. Let \(X \) be a topological space. Then there exists a zero dimensional space \(Y \) such that
\[
C_C(X) \simeq C_C(Y) \quad (C^F(X) \simeq C^F(Y)).
\]

The above theorem shows that, without loss of generality one may assume that \(X \) is a zero dimensional space. Therefore, considering this comment, the following fact which is our main result is in order.

Theorem 3.22. Let \(X \) and \(Y \) be compact zero dimensional spaces. Then
\[
RT(X) \simeq RT(Y) \quad \text{if and only if} \quad X \simeq Y.
\]

Proof. \(\Rightarrow \) Suppose \(\varphi : RT(X) \rightarrow RT(Y) \) is an isomorphism. It is sufficient to show that \(\varphi(T(X)) = T(Y) \) and \(\varphi \) maps the set \(M^*(X) \) onto \(M^*(Y) \). It is clear that \(\varphi(T(X)) \subseteq T(Y) \). Now, let \(g \in T(Y) \), then \(f \in RT(X) \) exists such that \(\varphi(f) = g \). Therefore, since \(\varphi \) is one-one, we can write \(\varphi(f^2) = (\varphi(f))^2 = g^2 = 1 \) which implies \(f^2 = 1 \) and therefore \(f \in T(X) \). Now, we have to prove that \(\varphi(M^*(X)) = M^*(Y) \). To this end it is sufficient to show that \(e(H^p(X)) \) is a \(P \)-filter if and only if \(e(\varphi(H^p(X))) \) is such. It is clear that
\[
-1 \notin H^p \iff -1 = \varphi(-1) \notin \varphi(H^p).
\]

On the other hand
\[
f \in H^p, \quad 1 + f + g \in T(X) \iff \varphi(f) \in \varphi(H^p), \quad \varphi(1 + f + g) = 1 + \varphi(f) + \varphi(g) \in T(Y).
\]
It is also clear that \(-g \in H^p \) if and only if \(-\varphi(g) \in \varphi(H^p) \). Hence, by Corollary 3.18, we are through.

\(\Leftarrow \) It is obvious. \(\square \)
Corollary 3.23. $T(X)$ and $T(Y)$ are strongly isomorphic if and only if $RT(X) \simeq RT(Y)$.

References

Ali Rezaei Aliabad
Department of Mathematics
Associate Professor of Mathematics
Chamran University
Ahvaz, Iran
E-mail: aliabady_r@scu.ac.ir
Mansoor Motamedi
Department of Mathematics
Professor of Mathematics
Chamran University
Ahvaz, Iran
E-mail: motamedi_m@scu.ac.ir